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The Klein-Kaluza theory with a nonvanishing torsion is developed. The torsion 
is associated with spin and polarization of a gauge field. The electromagnetic 
polarization is considered as a source of additional components of torsion 
connected with the fifth dimension. New physical effects obtained due to this 
torsion are pointed out and some cosmological models are studied. It is proved 
that new effects are 1036 times bigger than the effects from the Einstein-Caftan 
theory. The usual Dirac equation is generalized to the Klein-Kaluza theory with 
and without torsion. The dipole electric moment of a fermion of order 10 -32 cm 
is obtained. A new generalization of minimal coupling is proposed. 

INTRODUCTION 

The aim of this paper is to generalize the Klein-Kaluza theory to a 
situation with nonvanishing torsion of the connection. The polarization of a 
gauge field and spin will be associated to torsion. Our generalization of the 
Klein-Kaluza theory is analogous to the relation of the Einstein-Cartan 
theory to the general theory of relativity. The diagram (Figure 1) places the 
Klein-Kaluza theory with torsion among the above-mentioned theories. 

A new geometric element in our theory is the torsion in the fifth 
dimension, the source of which is electromagnetic polarization M~/~: 

Q5 = _ 2 K ~ = 8 ~ r M ~  B 

Roughly speaking, if one says that "mass curves space-time," "spin twists 
it" and "electrical charge curves the fifth dimension" then "electromagnetic 
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Fig. 1. A position of the Klein-Kaluza theory with torsion among General Relativity, the 
Einstein-Cartan theory and the classical Klein-Kaluza theory. 

polarization twists the fifth dimension." Naturally the fifth dimension is 
understood as a dimension connected with gauging. 

In this paper we will mainly deal with the five-dimensional case 
(electromagnetic). We shall point out the differences between a general case 
of gauge fields and electrodynamics. The paper is organized as follows. In 
Section 1 we define mathematical symbols used throughout the paper. In 
Section 2 the Klein-Kaluza theory in Cartan's formalism (Lichnerowicz, 
1955b) is presented. The main results of this work, i.e., Klein-Kaluza theory 
with torsion, are given in Section 3. Some physical applications of our 
theory are given in Section 4 together with a simple cosmological model. In 
that section we also demonstrate that new effects obtained in the Klein- 
Kaluza theory with torsion are 1036 times bigger than in the Einstein-Caftan 
theory. We calculate a minimal radius of universe model and get R--1012 
cm.  

Section 5 contains the generalization of Dirac's equation to the Klein- 
Kaluza theory both with and without torsion. We obtain a dipole electric 
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moment of fermion of order 10 -32 [cm] q .  Our results are similar to 
Thirring's (1972) work, but we do not have a minimal rest mass of particle 
as in that work. The procedure proposed in Section 5 may be considered as 
a generalization of minimal coupling. 

In Section 6 we generalize certain results to any semisimple gauge 
group. 

1. ELEMENTS OF GEOMETRY 

In this section we describe the notations and definitions of geometric 
quantities used in the paper. We use a smooth principal bundle P, which 
includes in its definition the following list of differentiable manifolds and 
smooth maps: a total (bundle) space P; a Lie group G--structural  group [in 
the electromagnetic case G=  U(1)]; a base space E - i n  our case it is a 
space-time; a projection II: P-- ,E;  a map qv: P •  defining the action 
of G on P, if a, b E G  and e E G  is the unit element then op(a)o~(b)=ep(ba)  
and q0(e)=id, where q) (a)p=q)(p ,  a), moreover ~r ocp(a)=~r. ~0 is a form of 
connection on P with values in Lie's algebra of group G. For a connection 
of electromagnetic bundle we use a symbol a. 

Let cp'(a) be the tangent map to cp(a) whereas q0*(a) is the contragredi- 
ent to qv'(a) at point a. The form ~0 is a form of ad type, i.e., 

cp* ( a )  o~ = ad'a_ it0 (1.1) 

where ad' a_ 1 is the tangent map to the internal automorphism of the group 

ada(b ) = aba - l 

In the case of group U(1) (Abelian) the condition (1.1) means simply 

~o=0 (1.2) 

Where ~5 is the Killing vector corresponding to one generator of group U(1). 
Thus, this is a vector tangent to the operation of group U(1) on P, i.e., to 

CPexp(ix) 

Because of the form ~0 we may introduce the distribution (field) of linear 
elements Hr, r E P ,  where HrC Tr(P ) is a subspace of the space tangent to P 
at a point r and 

v E l-Ir~,,oA v ) = 0  (1.3) 
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We have 

Kalinowski 

T~(P) = V~Hr  (1.4) 

where H r is called a subspace of horizontal vectors and V r of vertical vectors. 
For vertical vectors v E V r we have ~r'(V)=0. This means that v is tangent 
to the fibers. Let 

v = h o r ( v ) + v e r ( v ) ,  hor(v) EHr,  ver(v) ~ V~ (1.5) 

It is proved that the distribution H r is equal to choosing connection ~0. We 
use the operation "hot" for forms, i.e., 

where 

(horfl)(X, Y ) =  fl(hor X,  hor Y )  (1.6) 

where 

v)= 

Bianchi's identity for ~0 is the following: 

For the principal 
(Figure 2): 

The map f :  E D V--, P, so that fo ~r = id 

is called a cross section. From the physical point of view it means choosing 
a gauge. A covariant derivation on P d t is defined as follows: 

dl,t, = hot d,t' (1.10) 

hor d ~ = 0  (1.9) 

fiber bundle we use the following convenient scheme 

//,YeT(e) 

The two-form of curvature of connection ~0 is defined as follows: 

fl =hor  d~0 (1.7) 

It is also a form of ad type like o~. 
For f] the structural Cartan equation is valid: 

a = d o , +  �89 ~1 (1.8) 
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Fig. 2. Vertical lines depict fibers, while cross-hatched lines indicate the distribution of linear 
elements H r. 

This derivation is called a "gauge" derivation, where 't, is for example a 
spinor field on P. 

For a principal fiber bundle P it is possible to introduce a natural 
metrization in the following way: 

x, r)= ,,'Y)-x2h (Y)) (1.11) 

X, Y ~ T ( P ) ,  0 < X =  const 

Where h is the Killing tensor on a group G. It  is obvious that G must be 
semisimple. We have hab=C~aC~c, where C~b are structural constants of 
Lie's algebra of group G. The formula (1.11) has been given by A. Trautman 
(1970). In the case of group U(1) we have number  one - 1  as biinvariant 
tensor h. The tensor y is invariant with respect to group G. In this paper  we 
will use also a linear connection on manifolds P and E using formalisms of 
differential forms. So the basic quantity is a one-form of connection ~0A~. 
The two-form of curvature is as follows: 

f]AB=--dWAB + COAcACOC B (1.12) 

and the two-form of torsion is 

O A =DO A (1.13) 

where 0 A are basic forms and where D means exterior covariant derivation 
with respect to ~0AB. The following relation are established connections with 
generally met symbols: 

~oA8 = ['ABcOC 

~ ) A  - -  1 t 3 A  r  
- -  ~ ~ B C  ~ 

A - -  A ~ A  
Q 8c - r  ~ c -  ca 

~A ~ _-- ~] R A ~cD OC /~ a~ (1.14) 
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where FABC are coefficients of connection (they do not have to be symmetri- 
cal indices B and C), RABCD is a tensor of curvature, and Q'4Bc is a tensor 
of torsion. Covariant exterior derivation with respect to ~A B is given by a 
formula: 

D-A = d E  A d.-tOAcA~ C 

D EAB=dEAn + ~OAcAECB--wCBAE A c (1.15) 

The forms of curvature ~2~ and torsion 0 A obey Bianchi's identities 

D ~  =0 

DO A = ~ B A 0  B (1.16) 

All quantities introduced in this paper and their precise definitions can be 
found in the papers by Kobayashi and Nomizu (1963), Lichnerowicz 
(1955b), and Trautman (1970, 1973b). 

2. THE KLEIN-KALUZA THEORY 

2.1. Preliminary Remarks. In this chapter we present the classical 
Klein-Kahiza theory by means of the mathematical methods mentioned in 
Section 1. In the papers by Kaluza (1921), Lichnerowicz (1955a), Rayski 
(1965), Tonnelat (1965), and Bergman (1942) one may find both consecutive 
steps of creation of the theory and various approaches to it. The final form 
of the theory was achieved in the paper by Bergman (1942). Its particular 
variant, the so-called Jordan-Thiry theory, was proposed in the paper by 
Lichnerowicz (1955a). The Jordan-Thiry theory has much to do with 
Brans-Dick scalar-tensor theory of gravitation (Bergman, 1968) because of 
the introduction of an additional scalar field h (interpretation of h E is a 
gravitational "constant"). The equivalence of the Klein-Kahiza and Utiyama 
theories (Lichnerowicz, 1955b) of gauge fields has been discovered by 
Trautman and Tulczyjew (1970). Naturally Utiyama's approach is more 
general and makes possible a creation of unified theories of Yang-Mills 
field and gravitation. It has been done in Kerner (1968) and Cho (1975). It 
would be possible to achieve these results by means of conventional 
methods similar to methods given in Lichnerowicz (1955 a), Bergman (1942), 
and Tonnelat (1965). In order to do it one should take into account a 
(n + 4)-dimensional manifold (n is the number of parameters of gauge group 
of the Yang-Mills field). In this section we use the differential form method 
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in a way similar to that proposed already by A. Trautman (1972, 1973a). 
Section 2 serves for comparison to the results of Section 3. 

2.2, Manifold P. Let us introduce the principal fiber bundle P over 
space-time E with the group structure U(1) and with projection ~r. It is an 
electromagnetic bundle (see Figure 3). 

Using Cartan's structural equation (1.8) and Abelian character of U(1) 
we obtain curvature of connection: 

~ 2 : d a  (2.1) 

Now let us take two sections: 

In both cases we have 

e: E ~ P ,  f: E ~ P  

A =e 'a ,  F=e*~ 

A = f * a ,  Y=f*~2 (2.2) 

Since we may identify Lie's algebra of group U(1) with real numbers, forms 
F, A, A, F, are ordinary forms with real values. The form F due to the 
Abelian character of group U(1) does not depend on choosing a section and 
F =  ~ We have indeed 

F=dA, ff  = d ~  (2.3) 

Let X: E-*R be a change of section from e t o f .  

f (  p ) = +exp[ix(p)]O e ( p ) 

Thus we have 

X = A + d  X 

(2.4) 

(2.5) 

P 

l e 
E 

Fig. 3. a is a connection on bundle P. 

u (1 )  
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Form A is a form of four-potential 

whereas 

A =A~0 " (2.6) 

F =  �89 ~ , F~,~=O~A~-O~A~ (2.7) 

is a 2-form of strength of electromagnetic field, where 0 r is a frame on E. 
We have dF= 0 that is equivalent to Bianchi's identity for the connection a. 
This equation is equivalent to the first pair of Maxwell equations, i.e., to the 
condition of 4-potential existence. The connection a is called an electromag- 
netic connection. 

Simultaneously, we also have 

a=~*(F) (2.8) 

Now we turn to metrization of bundle P. Let us suppose that (E,  g) is a 
manifold with a metric tensor g, and Riemann connection ~a/3, where 
g=g~r174 The signature of g is (--  - - + )  and O ~ is a frame on E. 

Let us introduce a frame on P: 

0A : (~r*(0"), 05=Xa) ,  X>0,const  (2.9) 

It is convenient to introduce the following notations: Capital Latin indices 
A, B, C, D, E = 1,2, 3, 4, 5. Lower case Greek indices a, 13, 7., 6 = 1,2, 3, 4. The 
symbol -~ is introduced to indicate two properties of ~ :  the Riemannian 
feature and the fact that it is defined on E. Let us now introduce the tensor 
,f ='y~B0 A NO B on the manifold P in the natural way (Trautman, 1970). Let 
X, Y~ Ta n( P ) .  Thus according to the formula (1.11) we have 

o r  

v(x, r ) :  

Tensor 7 has signature ( -  - - 
a form 

"r=~r*g-05| 5 (2.10) 

+ - ) .  In this particular frame this tensor has 

7n = ( g ~ B  0 ) (2.11) 
0 - 1  
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It is clear that the frame 0 A is partly unholonomical, because 

dO5=~r*( XF ):/:O (2.12) 

We also introduce a dual frame (fA): 

V(fA) =TAB 0~ (2.13) 

We have ~'A = ( ~ ,  fS) and according to Section 1 

a y = 0  
f5 (2.14) 

Thus f5 is Killing's vector of metric T. Let us now introduce the Riemann 
connection ~AB on P and exterior covariant derivation D with respect to 
(%B: 

/)'gAB= 0, ff)O A = 0  (2.15) 

A solution of (2.15) is 

_ / ~*(~o~) + ~X~*(r~)0 5 ~ * ( F . ~ 0 ~ )  
(2.16) 

o 

Now we define a dual Cartan base on P. Let T]12345=(det y ) l / 2 = ( - d e t  g)l/2 
and T]ABCOe be a Levi-Civith symbol and 

T]A BCD z 0 E~A BCDE 

- - I  D 
~A~C--gO A~ABCD 

- -1  C 
T]AB--~O AT]AR C 

T]A = �88 /~T]AB 

T] = l oA AT].4 (2.17) 

On a manifold (E, g), i.e., on a space-time we introduce analogous quanti- 
ties: 

~ v ~ ,  ~1234=(--det g) '/2 (2.18) 
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~ B v  = 08~aBv8 

' - ~  - ( 2 . 1 9 )  7 = a0 An.  

Now we can define quantities which appeared in (2.17) by (2.19) and 0 5 . 

~/,q~ ~a~ = 0 

~aB5 = -- ~aOv 

~aB5 = TaB 

rla# = ~aBA 05 

'r/a5 = --~a 

~,~ ='~,~A05 

"q5 ='0 

n = ~ A 0 5  (2.20) 

In the formulas (2.20) on the left-hand side there are quantities defined on P 
and on the right-hand side defined on E. Actually it should be denoted not 

but r etc. For brevity we shall omit horizontal lift ~r* in all cases 
where it will not lead to a misunderstanding. In the case (2.20) we should 
remember that the overbar placed above a geometrical quanti ty means that 
it is defined on E. Quantities g~r ~,r etc. obey the following identities: 

ff~Ag~B=Ng.--829 ~ (2.21) 
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Now let us take a section e: E--,P and fit to it a coordinate x 5, selecting 
x"=cons t  on the fiber in such a way that e is given by the condition xS=0, 
and 

a 
f5 = Ox 5 

(see Figure 4). Then we have e*dx 5 =0  and 

where A =A,t~ ~ = e*a 

In this coordinate system tensor y takes the form 

(2.22) 

f~"~ = @"~ + �89 + 1)t( F~/~F~ + F"~,FB, ) OuAO ~ 

f~55=0 

J 

J 

e 

E 

Fig. 4. A connection between the fiber bundle formulation of the Klein-Kaluza theory and the 
classical formulation. 

x5= 0 

x 5 = const 

(2.23) 

This coordinate system is holonomic. 
Roughly speaking classically defined Klein-Kaluza theory consists in 

building a five-dimensional analog of the general theory of relativity, with 
metric tensor in the form (2.22). 

Now we calculate a two-form of curvature ~ A  of ~ B .  By applying 
formulas (1.12) and (2.16) we obtain 
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where ~ #  is a two-form of curvature of o~#, D is an exterior covariant 
differential with respect to ~/~, and F# = ~ 0  ~. 

Finally we give below coefficients of ~As: 

I') : �89 

" - f"- --  •  (2 .24 )  F ; 5  - -  Jt 5 / ~ - -  2 " ~  /~ 

~ 

where -a  F~y are coefficients of connection ~/~. The rest of the coefficients are 
equal to zero. 

2.3. Variat ional  Principle  and Field Equations. Now we shall derive 
equations of the Klein-Kaluza theory from the variational principle for 
scalar of curvature/( with respect to 0 A, "/AS, &As- We take 

/ (=  �89 A8 (2.25) 

It follows from the relationship between Y and O 5, that only 0 ", O 5, g~# are 
independent quantities. Thus we do not vary k with respect to Y55 and 755- 
We have 

8I~= 30 A AOA + �89 "#- �89 exact form (2.26) 

In the formula (2.26) @A, /~#, #A B are five-dimensional analogs of Einstein's ~ 

form ~ ,  symmetrical Einstein's form/T ~#, and Palatini's form/3 ~#, respec- 
tively. The latter are known from the Einstein-Cartan theory (Trautman, 
1972, 1973a; Kopczyfiski, 1973). Performing variation K with respect to 
O A, g~#, ~0~s we obtain 

@ A = - - ! ~ / ~  A ~ C  (2 .27 )  2 CA B 

(2.28) 

/~a B= -/}~/BA (2.29) 

By using the formulas (2.11), (2.16), (2.20), (2.21), (2.23) we obtain the 
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following equations: 

O = ~ A 0 5 + ( � 8 9  ' 2 v~ - A 5 , = ' r -  7XF F~.~v) e +~XvrF{,~ (2.30) 

45 = �89 ~t~rBr~vAO5 + [~,t~A ~'~ + [XZF,,F"~ (2.31) 

P f  =P~5 =PSr =P55 = 0 (2.33) 

The last equations (2.33) are valid because of the Riemannian property of 
~AB, where E ~ and e ~ are, respectively, Einstein's symmetrical form and 
Einstein's 3-form given by formulas (Trautman, 1970) 

[ 8 

a -- 2 ' I  Tot  ~ ,8 

(2.34) 

(2.35) 

Now let us turn to field equations. They are introduced into the Klein- 
Kaluza theory as sourceless equations: 

/~"~= 0 and 0 A =0  (2.36) 

Hence, taking into account (2.30), (2.31), (2.32), we obtain 

~-- ~2 {!~fl_ !.~Br~ 

1 / * v  - -  

--V-/3 FflV = 0 

(2.37) 

(2.38) 

(2.39) 

From the equation 45=0 we get one more equation which has not been 
given above. This equation does not belong to the equations of the Klein- 
Kaluza theory and is related to the equation G55=0, where GAB is the 
Einstein tensor. This equation should be deleted by taking ~5-hor~5 
instead of 45. The fact that the equation G55=0 appears is related to 
constraints existing in the theory, i.e., 755 = - 1 and ]'as = 0. An appropriate 
theory of Lagrange's multipliers might remove this drawback. However, we 
shall not deal with it in detail in this paper. The equality "{55 = - 1 is related 
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to the assumption that ~ is constant. In a theory in which ?~ may be variable, 
e.g., in the Jordan-Thiry theory, one obtains by varying/~ with respect to 
3'55 an equation for ?,. This leads to a theory with gravitational "constant" 
variable in time and space. It is just a theory of the Brans-Dick type. Now 
consider the equations (2.37) and (2.38). 

Notice that 

e m .  v a c ,  

! Pl~aFB-- ! P#~r a -- 9 ~ 2-- ~. 8-- ~6~--- T~/~ (2.40) 

and 

e r a .  v a c .  

21r t~ - - •  ~ - ! r ~  ~ (2.41) - -  2 ~t Jt l .Ledl.,  / 8 Jt J- p , v ' l a  

e m .  v a c .  

where T ~B is a tensor of energy-momentum of electromagnetical field in 
e m .  v a c ,  

vacuum and t~ is a form of energy-momentum of electromagnetical 
field in vacuum. 

We easily see that 

e r a .  v a c .  e r a .  v a c .  e r a .  v a c .  e m .  v a c ,  

T ~/~ = t ~ , where t ~ = t ~  (2.42) 

Putting h = 2  we obtain Einstein's equations with tensor of energy- 
momentum of electromagnetic field in vacuum as a source. Quantities in 
these equations are in units of the theoretical Gauss system with G =  1 and 
c = l  

e m . v a c .  
~ 

/~t~ = 8~ r T-~ 

e r a .  v a c .  

e~=8~r t" (2.43) 

The last equations are equivalent to one of Einstein's equations: 

e r a .  v a c .  
~ ~ 

/ ~ - -  �89 = 8~r T ~ (2.44) 

In order to go back to units of the cgs system we should take ?~=2G~/2/c 2. 
We shall use the theoretical system of units also in Section 3. 
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The equation (2.39) gives us the second pair of Maxwell equations. The 
first pair of Maxwell equations has been obtained earlier. Summing up, we 
have achieved equations of the Klein-Kaluza theory, i.e., equations of 
gravitation and electromagnetism. 

2.4. Bianchi's Identities. In the case of Riemannian geometry only the 
first of equations (1.16) is interesting for us. From this result the so-called 
contracted Bianchi's identities/}e A =0, and they lead to the conservation 
law of energy-momentum of electromagnetic field: 

e r I 1  

D t ~ =0  (2.45) 

and to the identity 

~-'~ (~-~,F~V) = 0 (2.46) 

The second identity is not interesting for a lack of sources of electromag- 
netic field. 

2.5. Geodetic Lines. Finally we discuss the equations of geodetic lines 
on manifold P 

u B ~7 8u A =0 (2.47) 

where uA(t) is a vector normalized as follows: 

g,~u"u~=l and gABUAUB=I--(US) 2 (2.48) 

A trajectory tangent to this vector field is a geodetic fine. The normalization 
condition (2.48) is easily understood if we take into account the existence of 
Killing's vector ~'5- This leads to an existence of the first integral of equation 
(2.47) u 5 = const. 

Putting (2.24) to (2.47) and using ~ = 2  we have 

~ 

~-u ~ 

dt +-2 uSF~uB= 0' u~=c~ (2.49) 

where D/d t  is a covariant derivation along a line to which u ~ is tangent. The 
first equation of (2.51) is an equation of motion of a matter point of 
q / m  o = 2 uS in both gravitational and electromagnetic fields (q is electric 
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charge and m 0 is a rest mass). The second equation of (2.49) means 
constancy of q/m o along the world line of a particle. 

3. THE KLEIN-KALUZA THEORY WITH TORSION 

3.1. Preliminary Remarks. The aim of this section is both the general- 
ization of the Klein-Kahiza theory to the case with a nonvanishing torsion 
of connection and finding physical interpretation of this torsion. The 
general plan is the following. We introduce on P the connection with 
nonvanishing torsion. This connection is invariant with respect to transfor- 
mations of group U(1). In this paper we also assume that a torsion of the 
connection is horizontal. The last condition will be discussed. Next we 
construct a form of a scalar curvature for this connection and introduce 
sources. Then from a variational principle we obtain equations of fields and 
interpret them. According to the postulate of geometrization of physical 
quantities we shall obtain equations where on the left-hand side there will 
be geometrical quantities and on the right-hand side matter quantities. In 
this way matter quantities will be sources of geometry. We shall obtain an 
interpretation of electromagnetic polarization as a torsion related to the 
fifth dimension. We get equations of gravitation in the Einstein-Cartan 
theory. On the right-hand side as source will be the sum of energy-momentum 
tensors of electromagnetic field with polarization of matter in the form 
given by W. Israel (Bailey and Israel, 1975; Israel, 1977, 1974) and of 
matter. Additionally there will be also a component ~rg,~r ~, where 
M,,  is a tensor of electromagnetic polarization of matter. This additional 
component has been obtained similarly, as the component with contact 
interaction (spin)• in the Einstein-Caftan theory. The new compo- 
nent may be treated as a contact interaction (electromagnetic moment) •  
(electromagnetic moment). The role of this component will be estimated and 
compared with the effects originated from Einstein-Cartan theory in Sec- 
tion 4. An equation of motion of a charged particle in an electromagnetic 
field in space with torsion will be derived from the equation of a geodetic 
line. We also derive the second pair of Maxwell equations in terms of 
derivatives with respect to connection with torsion. This will give us an 
additional internal current related to spin. The role of this current will be 
estimated in Sections 4 and 5. From Bianchi's identity we get conservation 
laws of energy-momentum, angular momentum, and charge. In this chapter 
we also analyze an example of an application of this theory, i.e., the vector 
field on the five-dimensional manifold P. 

3.2. Formulation of the Problem. We introduce an electromagnetic 
bundle P with natural metrization and a metrical connection conB on P 
invariant under a transformation of U(1). The connection ~0AB is not 
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necessarily Riemannian. We also define a connection ~ r  metrical, but not 
necessarily Riemannian on E. As far as indices are concerned, we follow the 
conventions given in Section 2. We assume that an overbar above a symbol 
denoting connection, covariant derivation, curvature, or some other quan- 
tity indicates that the quantity is defined on E, whereas a tilde means a 
quantity depending on Riemannian connection, e.g., ~ means Riemannian 
connection on E. Now we have (E,  g , ~ B )  a four-dimensional manifold 
with metrical connection, metrical tensor g with the signature ( -  - - +),  
and (P,  ,{, o~A~) a five-dimensional manifold with the metrical connection 
~0AB. Thus 

D~,AB=0, ~0AB=0 (3.1) 
f5 

Separating OJAB=COAS+XAB into a Riemannian part and a defect t~AB we 
have by virtue of (3.1) 

~:AB = --~:BA (3.2) 

~KAB=0 (3.3) 
fs 

The most general form of XAB obeying the equations (3.2) and (3.3) is 

Ir ~ 
0 

(3.4) 

LCv, K . r162  Z .  are tensors on E, whereas g.~=-x-B~ is a defect of 
connection ~-B on E and 

~B=;o~+~B (3.5) 

The most general form of a connection satisfying the condition (3.1) is 

w55=0 

(3.6) 

We put h = 2  in (2.16). By applying (3.6) we write down coefficients of the 
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c o n n e c t i o n  ~0 A B: 

re,= z, 

I'~5 = F~B + K~#, Fs~ --- Z" 

F~v = F~v+L"v, F55, = F55 = 0  

By using (3.7) we define an equation of geodetic line 

Kalinowski 

in the following form: 

O u  a 

dt 

(3.7) 

d u  5 

dt q-L/~vuauV+ Z#uBuS---O (3.9) 

where vector u ~ is normalized 

g,~#u'~u ~= 1 (3.10) 

In general, equations (3.9) do not have an integral of motion uS=const.  
They will have it only when 

L(Bv)=0 and Z a = 0  (3.11) 

Thus we obtain 

Du a --~-+(2F~/~+K~B+L~)u~uS=O, uS=const  (3.12) 

where L~#= - L r  So the condition (3.11) must be added to (3.6) and (3.7). 
This is forced by a physical necessity to keep q/m o constant for a test 
particle along a world line. It corresponds to the well-known interpretation 
of u 5 in the classical Klein-Kaluza theory. To be in line with the conven- 
tional interpretation of geodetics in that theory we put 

2H~a= 2F~+ K"a+ L~a (3.13) 

- -  + (2F~a+ K~a+ L~ )u~uS=O 

u s v s u  A =0 (3.8) 
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and regard H~/~ as a measure of strength of electromagnetic field acting on a 
test particle. Thus the equations (3.12) become 

O u  a 
dt + 2uSH'~BuB:O' uS=c~ (3.12a) 

Hence formally, they do not differ from (2.49) 

3.3. Geometry of Manifold P. Using (3.13), (3.11), and (3.6) we get 

(LoFKo )]0 5 

%5 = 0 (3.14) 

Now we calculate forms of torsions of ~0A,: 

OA=DO A (3.15) 

Applying (3.14) and (3.15) we obtain 

05 = ~r* (Lv/~t~'At~ v ) (3.16) 

where ~9~ is a torsion of ~ on E. It is worth noticing that the form O 5 is 
horizontal, so it does not depend on a choice of section of bundle P (choice 
of gauge). The horizontality is due to the vanishing of vector Z~, for we have 
in general 

05=~r*(L,~BOt~AO'~)--~r*(Z, OB)AO 5 (3.17) 

Now, let us turn back to the equation (3.12a). It is obvious that the test 
particle is sensitive only to the sum of tensors K~a and L~a. Nevertheless the 
difference K,q~--L,~/~ appears both in formula (3.13) and in the first one of 
(3.16). Because of this it seems natural to assume 

K,~a : L,#~ (3.18) 

Thanks to (3.18) forms of torsion of connection become horizontal (they do 
not depend on a choice of gauge). The equation of geodetics takes the shape 
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(3.12a), but with H~r = F~r + K~r We also get 

m 

(9~=~r*((9~) (3.19) 

o) (3.20) 

Now it is clear that we add to (3.1) one more assumption, viz., 

(gA = h o r  (gA (3.21) 

This is a simple geometrical condition having some physical motivation. 
This condition leads to a separation of torsion of space-time from torsion 
related to the fifth dimension and makes possible a correspondence to the 
Einstein-Cartan theory. For instance we would not obtain the relation 
between spin and torsion known from the Einstein-Cartan theory if Z~v~0. 
For an arbitrary gauge group G the horizontality of torsion has the identical 
motivation. When G is non-Abelian the condition (3.1) must be modified, 
and it will be discussed in Section 6. Inserting (3.18) into (3.14) we obtain 

6o55 = 0 

(3.22) 

and 

o - - o  rL_nB, r <rL, 5_  

r;3= /oB (3.23) 

The rest of the coefficients are equal to zero. Observe that formulas (3.22) 
and (3.23) formally look like formulas (2.16) and (2.24) from the classical 
Klein-Kaluza theory. A torsion, thanks to the condition of horizontality, 
becomes independent on a section. Thus this torsion (especially (95), simi- 
larly to curvature of connection of the principal bundle P, will have an 
absolute character of the same type as the strength of the electromagnetic 
field. In Section 6 we shall discuss in a similar context a form (9 with values 
in Lie's algebra of G. 
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NOW let us calculate a two-form of curvature of 0~AB; using (3.22) and 
(1.12) we obtain 

~5 s : 0  

We deleted horizontal lift ~* in formulas (3.24). Defining forms 

RABc= RABcDOC (3.25) 

in a similar way as in the paper by Trautman (1972), we easily conclude 
them from formulas (3.24): 

R,~,5 = _ BH,~, 

Rs~v= 2 ( ~  [villi + HflPOpva)Oa + HsvH~a05 (3.26) 

Rs '5= - n.a,H;O~ 

The rest of forms R equal zero. We also calculate forms Q~ as in the 
Einstein-Cartan theory (Trautman, 1972) 

QAB: QABc OC (3.27) 

Using (3.27), (3.19), and (3.20) we obtain 

Qs,= _ 2Kv,fl,, (3.28) 

The rest of the forms of Q equal zero. 
In formulas (3.26) and (3.28) we have omitted lift rr*. In these formulas 

a f o r m s / ~ B  and Q v mean analogical forms on E. 

3.4. Variational Principle. Field Equations. As in Section 2, we for- 
mulate a variational principle for a scalar of curvature K constructed for 
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s 

K= �89 ~AR (3.29) 

We vary K with respect to ~oAR, 3'AS, and 0 A. Since independent quantities 
are only ~o~,, K~t~, g~ ,  0 s , /~ (due to constraints) we vary K with respect to 
these quantities. Thus, we have 

8K=8OA Ae  A + �89 �89 AOS + RK,,~ 8K + exact form 

(3.30) 

Analogous formulas for e A and E "t~ can be obtained from (2.27) and (2.28) 
by replacing in them (~c D with the curvature of OAR. In order to calculate 
variations with respect to independent components of ~oAR we take variation 
of K with respect to ~OAR with constant 3'An and 0A: 

( 6K ) OA, "/AS: -- �89 (3.31) 

where 

pA R= --D~A R (3.32) 

By substituting formulas (2.20) and (3.22) into (3.32) we obtain 

p~----fi~A O s + 2 K~t~ 

pSB= -pSB =D~t ~ (3.33) 

p55=0 

Then by inserting (3.33) into (2.31) and varying K with respect to ~ a  and 
K ~  we easily get 

( RK )OA, yAR = -- �89162 AOS--RK'~t~K~,t~s (3.34) 

and finally 

8K 
$K" ~ - K,~a~/~O 5 (3.35) 

In formulas (3.33),/3" B is the Palatini form on manifold E (in ~,a). It is 
given by formulas analogous to (3.32) but for quantities defined on E. In 
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the same way as in Section 2 we can calculate forms of e A and E "r by 
putting into formulas (2.27) and (2.28) the form ~c given by (3.24). After 
simple calculations we obtain 

e~----~,A05+ ( H t ~ F ~  - �89 H~H,~,~ + 2 HY~F~v  ) A05 

e s = - ~ H l ~ l ~ , A 0 5  i -  A - , ~  i,~ - l ~ -  (3.36) 

where F2= F~,F ~,  K 2= K , , K  ~. E "t~, ~ are, respectively, the symmetrical 
Einstein form and the Einstein form built from ~ r  (on manifold E), For 
simplicity we omitted in formulas (3.33) and (3.36) the horizontal lift or*. 
Let us consider the sources. Define a 5-form: 

A=A(TAB,OA,~oA~,qI~) (3.37) 

on a manifold P. We vary A with respect to independent quantities, i.e., g~t~, 
0~, 05, ~ ,  K~r 't'a. Form A serves here as a generalized Lagrangian, and 
we put 

s  

~5 (3.38) 

By varying with respect to independent variables we obtain 

~ a = ~ o  A AtA + kSgo~*( f~  A0' + ~ * (  ~~ ) A ~*(L~ ) A05 

+ �89 ( Mff q ) A 05 + L~8"I" a + exact form ( 3.39 ) 

where Sff is a form of spin and f~B is a tensor of energy-momentum of 
matter, 'I' a is a set of "matter" variables, and L a= 0 is an equation of motion 
of matter. Quantities 'I' a may be either fields or macroscopic variables, i.e., 
density, enthalpy, pressure. Later on we shall analyze particular A and "t" a. 
It is clear that we have 

~t A = 0  

~'5 (3.40) 
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and the most general form of t A is 

,o--.*(;o) A o '  

(3.41 

t~ is a form of energy-momentum of matter a n d j = j ~ g ,  is a form of current. 
The quantity i .  is only an auxiliary one and will be eliminated by the 
Bianchi identity, t is related to a horizontal part of t 5 and eliminated from 
field equations by Lagrange multipliers. 

Notice that from (3.38) we have 

A(ya~,OA,~oae,avG)=~(g,,t~,O'~,OS,go~,H~,q'a) (3.42) 

where E is a 5-form on P. It is easy to understand that 

1 8 ~ -  1 8E 1 8~ (3.43) 
II*(M'~e{)AOS- 2 8H.~ 2 8F.~ =2 8K~,~ 

One will see from the definition of M "B in (3.43) and (3.39) that we interpret 
this quantity as electromagnetic polarization. Let us now consider the 
variational principle 

8 f v ( K -  8rrA) =0 ,  VCP (3.44) 

We shall obtain equations from (3.44) by varying K-8 r rA  with respect to 
independent variables 

Constraints 755 = - 1, "{s, = 0 (discussed in Section 2) allow us in principle to 
introduce Lagrange's multipliers to eliminate equations connected with the 
horizontal part of e s and t. But we shall not discuss this point in detail in 
this paper. 

Let us now write Cartan's equation, i.e., the equation obtained as a 
result of varying K -  8~rA with respect to oaAo. This yields 

K , r  - 4~rM~r (3.45) 

The first equation of (3.45) is Cartan's equation known from the Einstein- 



Gauge Fields with Torsion 587 

Cartan theory. This equation connects torsion with spin. The second 
equation is a new one which establishes a geometrical interpretation of 
electromagnetic polarization as torsion related to the fifth dimension. Using 
this equation we see that 

H,~a=F,~B-4~M,~ B (3.46) 

and we interpret H~B as the second tensor of strength of electromagnetic 
field. Varying K-8YIA with respect to g ~  we obtain the following equa- 
tion: 

where 

(era ) 
/~"~=8rr T '~ + T'~l~+~rg'~t~M2g (3.47) 

M 2 = M u ~ M  t'~ 

T ~em =--8,/7.1 ( H ~ F f  +H"~F~) ~-- 1--~ g l  ~~ 2 o  F 

F2= F~,F ~'~ 

It is worth noting that to obtain (3.47) we have used equations (3.37) and 
the second equation of (3.45). Variations with respect to @A = (O", O s) yield 
the following equations: 

~=8~r ( 

where 

and 

em ) 
+ + (3.48) 

1 2 - )  em 1 '~ - - -  F ~ 
a~y 

-~ rH~'~=4~rj v (3.49) 

-~ v H~ + H~ ~ = 4rri~ (3.50) 

Constraints eliminate an equation in which t appears. The equation (3.50) 
can be reduced to (3.49) by Bianchi's identities. 
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Equations (3.47) and (3.48) are equivalent because of identities known 
from the Einstein-Caftan theory (Trautman, 1972) 

 D--eo  (3.51) 

T.r (3.52) 

e m  e m  

and the relation between T "~ and t~. Equations (3.47) and (3.48) are 
equations of gravitation in Einstein-Cartan theory. Equation (3.49) is the 
second pair of Maxwell equations for the second tensor of strength of 
electromagnetic field H~r Derivatives in (3.49) are covariant derivatives 

e m  

with respect to ~ (with torsion). The tensor T ~ is a symmetrized form of 
erf l  

the tensor t ~ ,  where 

e m  e m  

t~=taB~B 

3.5. Interpretations of M.~ and K.~. Comparison to W. Israel's Results. 
Now we give an interpretation of the equations achieved in Section 3.4 and 

e I l l  e I l l  

quantities introduced there. First we notice that quantities T "B and t ,  
introduced in (3.47) and (3.48) may be regarded as forms of energy- 
momentum of electromagnetic field symmetrical and nonsymmetrical, re- 
spectively. H~r is regarded as the second tensor of electromagnetic field. 

e m  

t o is a form of energy-momentum reported in Israel's papers (Bailey 
e m  

and Israel, 1975; Israel, 1977, 1974) and T "~ a symmetrized form of Israel's 

tensor. 
The second equation (3.45) defines a relation between torsion in fifth 

dimension and electromagnetic polarization of matter. It is an illustration of 
Einstein's postulate that matter quantities are on the right-hand side of 
equations and geometrical ones on the left-hand side of them. Electromag- 
netic polarization becomes the source of torsion. This equation is algebrai- 
cal, so torsion is present and nonvanishing only when electromagnetic 
polarization does not vanish hence a torsion may not be zero only when 
matter is present. This equation is of the same type as the equation relating 
spin to torsion in Einstein-Cartan theory and it has been achieved in a 
similar way. Let us now introduce a two-form of electromagnetic polariza- 
tion 

M=  (3.53) 
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and a two-form of the second tensor of strength of electromagnetic field 

H=�89 B (3.54) 

Taking into account the second equation of (3.45) and (3.20) we get 

a -  (3.55) 

Equation (3.55) establishes a relation between "matter" and geometrical 
quantities. Actually it states that form H, a "matter" quantity, is a source of 
a geometrical quantity. The equation (3.55) is an analogon of the equation 
(2.8) present in the classical Klein-Kaluza theory. 

In Section 6 we shall obtain a generalization of equation (3.55) when 
the gauge group is not just U(1) and may be non-Abelian. 

Instead of (3.45) we can write 

| (3.56) 

Now let us turn back to equations (3.47) and (3.48). Define the symbols 

e m  e m , t o t  

T,# ~ +frgaBM2_= T,~B 

e m  era . to t  

t~ +~rm2~a = t a (3.57) 

and 

tot  e m . t o t  

T,~B = T,~B + T'~ 

tot  e m . t o t  

to +io (3.58) 

Then equations (3.47) and (3.48) take a form 

tot 

/T ~ =  87r T ~ 

tot  

~ = 8~r t~ (3.59) 

Thus equations (3.59) are the Einstein-Cartan equations with the sum of 
the following energy-momentum tensors: of matter, of electromagnetic field 
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(of Israel type with polarization of matter taken into account), plus a new 
additional pressure-type component. We shall analyze this component 

era.tot 

--~rM2g,~ and estimate its role. We have introduced symbols T "~ and 
em.tot  

t ,  because the additional component with M 2= M~,~M j'~ may be treated 
as a kind of electromagnetic interaction. This is a contact interaction 
(electromagnetic polarization) • (electromagnetic polarization). This interac- 
tion appears due to torsion related to the fifth dimension and is of the same 
type and origin as a (spin)• interaction in the Einstein-Cartan 
theory. 

The (spin)• (spin) interaction in the Einstein-Cartan theory is consid- 
ered to be of gravitational origin. So it seems natural that we consider the 
new interaction the additional electromagnetic interaction. Perhaps this 
interaction may be related to a nonlinear electrodynamics. In Section 4 we 
shall discuss some consequences of the existence of this interaction. 

In their work Bailey and Israel (1975) analyzed, in a phenomenological 
way, a theory of spinning particles, electrically charged with magnetic 
moment. The procedure developed by us in this chapter geometrizes W. 
Israel's results and leads to some new additional effects. Namely, the new 
features of our theory when compared with Israel's model are the ap- 
pearance of the component ~rM2g,~ and the fact that the second pair of 
Maxwell equations are written by aid of covariant derivatives with respect 
to connection with torsion. 

Israel's theory does not use Einstein-Cartan theory as a gravitational 
theory. For this reason many interesting geometrical relationships cannot be 
obtained in this theory. It seems to us that both the role of torsion and the 
program of geometrization of matter quantities were underestimated in the 
Israel approach to the problem. 

3.6. Bianchi's Identities. Conservation Laws. We obtain the contracted 
Bianchi's identities from the Bianchi identity (1.16) 

De A = QS A Ae  B -  �89 ~ c  ApB c 

DpAB=eBAOA --eA AO B (3.60) 

Substituting equations (3.36), (3.33), and field equations (3.45), (3.48),(3.49) 
into the second of (3.60) and taking formulas (3.26) and (3.28) into account 
we get the angular momentum conservation: 

tot tot 

/)if.a-- O.A t~ - -~A t, (3.61 t 



Gauge Fields with Tor s ion  591 

and the identity 

(3.62) 

where S~=SV~v. The last identity is not a new conservation law. It only 
establishes the relation betweenj~ and i,. In this way it eliminates equation 
(3.50), reducing it to (3.49). Finally we have got the equation (3.49) as the 
only equation of electromagnetic field (the second pair of Maxwell equa- 
tions). 

This equation is written by aid of covariant derivatives with respect to a 
connection with torsion. We can write them as Riemannian derivatives on E 
and spin. We have 

V-BH ~B = ~ H  rB + ~rSr~. H B" (3.63) 

Thus equation (3.49) is equivalent to 

tot ~ 

-V I~H~B=4rrj r (3.64) 

where 
tot 

jv =jr +jir=jr_ �88 ~vB,,H~,, (3.65) 

The internal current./,, r =  - �88 satisfies the generalized "Ohm's law" 
(proportionality to strength of field). In Section 4 we estimate the contribu- 

tot 
tion ofji  v to j r ,  and in Section 5 we find certain other implications of the 
existence of this current. Here we only notice that j r  is of gravitational- 
electromagnetic nature. Thanks to this, both gravitational and electromag- 
netic fields are more strongly interrelated than in classical Klein-Kaluza 
theory. 

Now let us turn back to the first equation of (3.60). We get from it 

tot tot 

/ff t~ = Q~A tt~ - �89 (3.66) 

i.e., conservation law of energy-momentum in the Einstein-Cartan theory 
for total energy matter and electromagnetic and gravitational fields. We also 
obtain the continuity equation 

tot tot tot 

d j =0 ,  j = j r  ~v (3.67) 

i.e., conservation of a charge. 
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Thus we have achieved the following laws: energy-momentum con- 
servation, conservation of charge, and angular momentum conservation. 

3.7. Geodetic Lines. Interpretation. Equations of geodetic line (3.12a) 
on manifold P could be interpreted as an equation of motion of a test 
particle in both electromagnetic and gravitational fields. A particle without 
spin is believed, in the Einstein-Cartan theory, to move along the Riemann- 
ian geodetic line. But the equation (3.12a) cannot be regarded as an 
equation of motion of a spinning particle (there is no component with a 
magnetic moment). So, in our theory the equation of motion of a tes t '  
particle is 

D u ~, 
dt + 2uSH~u~=O' uS=c~ (3.68) 

It is an equation of geodetic line on manifold P with respect to the 
connection ~AB which differs from ~0aB only in that 

In Lorentz's force term in the equation (3.68) there is the tensor H~r = F~B+ 
K~r that describes a total electromagnetic field with a polarization of 
matter. Thus, the equation (3.68) is a generalization of both the equation of 
motion of a spinless particle in the Einstein-Cartan theory and equation 
(2.51) from the Klein-Kaluza theory. 

3.8. Example. Vector Field Charged on P. Let us define a vector field 
on P 

WA(p) 

W~( pg,)= W*( p )o(gl) 

p=(x ,g )EP,  g, glEU(1) 

o: U(1) --, GL(5, (g) (3.69) 

For any section f: E ~ P we have 

f'wA= ( wL I ) (3.70) 

W~ and q~ are a vector and scalar field, respectively, defined on E. Interac- 
tion among field W,~ and gravitational and electromagnetic fields described 



Gauge Fields with Torsion 593 

by the Klein-Kaluza theory with torsion is introduced by taking in Lagrange 
form derivatives in the form 

@W A = h o r D W  A 

@W2=hor DW2 (3.'11) 

Thus we have 

@W 5 = d,cp- WBHr v (3.72) 

|174 H~O B (3.73) 

- ( ) 

These formulas have been obtained with the aid of (3.22). ~ is an exterior 
differential with respect to both ~r*(w~) and a "gauge", e.g., we have 

|  D IV. (3.74) 

Now let us analyze Lagrange 5-form 

A = x  @W A A( |  WA*), x=const (3.75) 

Substituting formulas (3.72) and (3.73) into (3.75) we easily find 

+xHY'~[ Cp*(-Vv- iqAr ) W,~ +~p(-Vz, + iqA~, ) W* + 

+ (O,-iqA~,)~p*W* + (O,+iqA~,)cp*W,] A 1-I*(~) A05 + 

+ ,  (IcpI:H.~H"~- W"W*t~H~H~,)~r*(~ ) AO 5 (3.76) 

In formula (3.76), apart from the sum of Lagrangians of both scalar and 
vector fields, the additional interferential components appeared. According 
to our rules we calculate variations with respect to independent variables of 
a connection obtaining both spin and electromagnetical polarization. 
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We have 

M,~/3= x[ep* (Vo , -  iqA[,~) Wfl] + cP (-V [o, + iqA[,~) WB* 1 + ( O[,~- iqA[,~) q~WB* ] + 

+ (3i,~+ iqa[,~)~P*W~l + 2Iw[=H,~ a -  Wt,,,W*VHirta j-  W~,,,WYHITlal] 

(3.77) 

Unfortunately the equation (3.77) is so complicated that a general analysis 
of it seems to be a really difficult task. So we discuss here only a particular 
case when W,=0.  

j fW,=O; then we have 

and 

A=~*[-gdl~/~(dl(~*)$]/~O5-~-gl~12HaTgaY~/~O 5 (3.78) 

M~e= 2~lepl2H=~ 

From equation (3,45) it follows that 

K.~-- 8"//'K1~12 
1 + 8~r~c[------~l 2 f,~r 

and 

(3.79) 

(3.80) 

g~,t~( O'~- iqA'~ ) ( 3#-  iqA ~ ) =8rp 
S 

(1 + 8 ~'xlg)l 2)2 
(3.81) 

where 

S = -]F~,,F."-"=(BZ--E z) 

So, in equations (3.81) has appeared a component with an effective mass 

This particular case has an interesting feature--the form of spin vanishes. 
Hence the torsion of space-time vanishes as well, but it still is not equal to 
zero in the fifth dimension. From the equation (3.78) we get a field equation 

Fa# 
H . ~ -  (3.80a) 

1 + 8~r~lrl= 
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depending on electromagnetic field. In some very strong electromagnetic 
fields such a "mass" could have reasonable values. And we see that in the 
case just discussed the field causes the creation of a polarization of vacuum 
(3.80). Notice also that the geometrical quantity W A defined on P may be 
regarded as a multiplet of vector W, and scalar r fields taken in any gauge. 
This can be extended to any gauge group G. In Section 5 the spinor field ~t" 
will be treated in a similar way. We shall use there the derivative | as well. 

4. APPLICATIONS 

In this section we discuss new physical effects appearing in the Klein-  
Kaluza theory with torsion. We estimate the contribution of a new addi- 
tional pressure-type component. We shall define a component describing 
coupling between electromagnetic field and spin in the Einstein-Caftan 
theory and we shall also arrive at a cosmological model without either initial 
or final singularities in R ( t ) - - t h e  radius of the universe. The equation (3.59) 
may be written in tensor notation (we turn back to the cgs system): 

where 

) �89 t.#+ t.# + rM2g.B (4.1) 

~m 1 ~ _�88 ) 

is a tensor of energy-momentum of electromagnetic field in Israel's form. 
We also write the equation (3.45) in the tensor notation 

z-,~ ,~ ~ .~-8 _ 8~G~,~ 
Q t~v+8~Q v~- rvQ t ~ - - - ~ - -  t~v (4.2) 

By applying formula (4.2) and the relation between the Riemannian connec- 
tion and Cartanian one on E we obtain the formula (4.1) in the form known 
from the work of Arkuszewski, Kopczyfiski, and Ponomariew (1974): 

\ c 3 )[2S~t~vS +2S~v'S t~ Soy'S t~ 

g,4~(SyS S.v,S zS~v,S~v)] (4.3) 

where S,= S~',~,. 



596 Kalinowski 

Now let us consider the simple model described by the following 

t~a= u~ha-pS~ 

S ~ r - u  Sa~, 

M a=oS a 

j~ = nqcu. 

uaSav=O 

(4.4) 

This is a dust model, where h e is a four-vector of enthalpy, u~ is a 
four-vector of velocity, O is a gyromagnetic ratio, n is a concentration of 
dust particles, and q is a charge of a dust particle. Quantities (4.4) must 
obey the Bianchi identities, i.e., conservations law, in particular angular 
momentum conservation, which has the form 

- - -  l -  A - 1 A 1 ~, DS~a=cO ~ ta-cO a t~-c(M~Fua-M~F,~){ (4.5) 

Substituting (4.4) into the formula (4.5) we obtain the formula for he: 

ha=(e+p)ua+cu"uV~vSa.-uV(M%Faa-M"r ) (4.6) 

Inserting (4.6) into the first formula of (4.4) and using the relation between 
M~a and S~a we get 

~ 

t~a=(e+p)u~ua+pg,t~+cu~u~uVvvSa~-pu~S~aF~vuV (4.7) 

where e=t~au~u ~ is the density of energy. Applying the formula (4.7) and 
(4.4) and (4.3) we finally obtain 

87ra [em'vac ( c4 t.a 4~rGs21 R,a-�89 = + e + p - - -  U~Ua+ c 2 ] 

-(p-~-G-s2-2IIp2S2)g~13+ 

- c (  g', +u'u " ) v  + o( uos` u` u "- ) ] 

(4.8) 

formulas: 
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In the formula (4.8) we have explicit a term of coupling between spin and 
electromagnetic field. Namely, it is 

(4.9) 

Now we conclude that (4.9) is the term that has been searched for in the 
Einstein-Cartan theory. 

em.vac. 
and t~r 
vacuum. 

s 2 =  ksoes  "~ 

is a tensor of energy-momentum of electromagnetic field in 

The additional component (4.9) may influence the evolution of stars 
with magnetic field. It would be very interesting to analyze this term in 
relation to a theory of neutron stars. In such a case 0 would be a nuclear 
magneton. Now let us introduce the symbols 

2~G s 2  2~p282=Ptot 27rG $2 peft= p - c 2 c 2 

21rG 2 2 2 2rrG s 2  (4.10) 
eeft=e - - - - ~ - - S  +2~rp S =--eto t -  C2 

and 

Ptot =P  -- 2 r 2 

e t o t=e+  2qrp2S 2 (4.11) 

The formula (4.8) really differs from the analogous formula given in 
Arkuszewski, Kopczyfiski, and Ponomariew (1974). The differences are as 
follows. First of all there is a component giving a coupling between 
electromagnetic field and spin on the right-hand side of the equation. 
Secondly there has appeared an additional pressure-type component. This 
component gives a correction to e and p. However, the correction term to e 
has a reverse sign from the correction in the Einstein-Cartan theory. Now 
we estimate the contribution of this new correction in relation to that 
known from the Einstein-Cartan theory. To do this we assume that our 
fluid is a nuclear fluid, thus 

q p = - -  
mpC 
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Taking the ratio of these two corrections we have 

new component connected to the fifth dimension __ C2p2 

Kalinowski 

additional component  known in Einstein-Cartan theory G 

_ q2 - 10 36 

m2G 

An interesting fact is that the ratio q2/m2G is simply equal to the ratio of 
electric interaction of two protons to their gravitational interaction. Now let 
us estimate a density for which this correction will be comparable to the 
density of energy e. 

We have 

q2n2h2 
S~-�89 2trp2S 2 -  4m2pc2 , e~-mpC2n 

Assuming that 

we obtain 

q 2 n 2 h 2  
e ~ mpC2rl 

4mp2c 2 

n I ~ 10 43 c m  - 3  

But it is known that the correction to e in the Einstein-Cartan theory is 
comparable to e for a concentration 

n 2 ~  10 79 c m  - 3  

Concentrations n I and n 2 correspond to matter  densities: 

Pl = 1018 g cm-3 ,  P2 = 1054 g cm-3  

The same order of concentration as n I is possible in the center of a neutron 
star. So this correction should play a certain role in the evolution of a 
neutron star, gravitational collapse, and in cosmological models. Notice also 
that for an electron gas we have 

r t l~-  10 33 cm-3 
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Now we turn to estimating the contribution of additional currentji v to total 
current. Let us consider the equation (3.64) 

where 

~ a H y r  4__~_~ ;4  (4*) 
c 

;~ = u ~ \( nqc-  G_G4c z FB~S + --~-- rrG ~ 2 ) 

tot 
The current j r  may be regarded as a convective current by introducing 

(4.12) 

qeff=q-- G~FB~S~+p2~G s 2 
4nc 3 nc ~ 

tot 

j7 =ncqeffu v (4.13) 

We estimate now a density for which the second correction to qeff is 
comparable to q. Putting S~-�89 we obtain 

~GqhZn 
2 mpC 4 ~ q 

from which it follows that 

2rap c4 ~_ 1078 n--~ cm -3 
~rGh 2 

Notice that n is the same order as the density n 2 in the Einstein-Cartan 
theory. The first correction to qeff depends on the electromagnetic field and 
gives a certain "electromagnetic structure" of an effective charge, but is very 
small and unobservable in normal situations. Now let us consider once more 
the equation (4.8). It seems quite interesting to analyze cosmological models 
based on it. Let us adapt the already existing Kopczyfiski models to 
estimate the role of an additional component related to the square of 
electromagnetic polarization. We neglect components connected with de- 
rivatives of spin and we include electromagnetic field in the matter term. 

We also put a metric tensor in the Robertson-Walker form 

ds2=c2dt2 R2( t )  dx2+dy 2+da2 
l+ �88  2) 

(4.14) 
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where K =  0, --+ 1. The equation (4.8) takes the form 

RaB- �89 ~gaB = 8 "/rG [ ( qeff q- Pelf )U a UB- Peff gaB] C 4 
(4.15) 

We assume in addition o = S125 ~ 0 and S~ = 0 when/,  + v ~ 3. It is easy to see 
from (4.5) the spin conservation law as in the Einstein-Cartan theory 

d(Sff) = 0  (4.16) 

where 

s= (�89176 

Inserting (4.16) into our cosmological model we obtain 

s2= �89 2 

~ o R  3 = ~ = const (4.17) 

We get Friedmann's equations after substituting (4.17) and (4.14) into (4.15) 

8~'G /~ /~2 K 
C4 peff z -- 2 c2R~ c2R2 R2 

81rG /~2 3K (4.18) 
C4 eeff=3 C--~R2 + R2 

Assuming that p = 0 and substituting (4.10) we finally get 

) 2/~ + +2rr02 + =0  (4.19) 
R 2 c2R 6 

and 

8wG 3/~ 2 }- 9/x2G 3K (4.20) 
C 4 etot-- R2c 2 ~ nt- R-.--- ~ 

where eto t is given by (4.11). Using (4.17) we have 

etot = e + 9p'202 (4.21) 
8qrR 6 
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Now let us examine equation (4.19) and find a first integral of (4.19) 

R22 ~ G  + 3/~2G (~22 +27r02) _ 2 R 4 c  2 Kc22 (4.22) 

Where M is a constant of integration. We shall find its interpretation by 
substituting (4.22) into (4.20) and using (4.21). 

In effect we have 

4~r 3 2 ~--R etot=Mc (4.23) 

So we see that M has an interpretation of the total mass of the universe. 
Notice that it is just the energy eto t that is conserved but not e. The last fact 

tot 
is obvious for we have achieved the conservation law for t , .  Now let us 
consider the equation (4.22). Its solution is 

t= f R dr/[-I ,:c2 + - 
Rmin L 

2MGr 31x2G ( ~ + 27rp2 ) ] 4 (4.24) 

as in Kopczyfiski's work (1973)i We perform integration for K=0  and get 

(4.25) 

We obtain the three types of models of the universe with minimal radii 
R ~ n r  elliptical, flat, hyperbolical. From the equation (4.22) we obtain for 
turning points/~ = 0 

KR4x 2~cRL+ 3~ 2~ ---~-- ( ~22 +27r02) =0 (4.26) 
In the elliptical case solutions (4.26) give both minimal and maximal radius 
of the universe. For the flat case K = 0  we get 

R~o=R(0)=[ 2. 2 C [ 2-~-~c2 ( ~-~ + 2vp2 ) ] 1/3 (4.27) 

Substituting M=mpN, N~-10 s~ and 1~=�89 (where N is the number of 
nucleons in universe) into (4.27), we have 

Rmin-~ l012 cm (4.28) 
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That is 12 orders more than in the models of Einstein-Caftan theory. 
Estimation (4.28) will also be true for both elliptical and hyperbolical 
models when the following condition is fulfilled: 

c a [ 2 G << 1 (4 .29)  

as in Kopczyfiski's work (1973). 
Now let us estimate the contribution of the component M 2 to the 

density of energy for the contemporary epoch, i.e., when R( to)~-1036 cm. 
Then we have 

Ae _ 9~2p 2 ~ 10 -127 gcm -3 (4.30) 
A p :  c 2 8rrc2R6( to) 

At present Ap is so small that it is unmeasurable and we have 

etot(t0) ~--e(to) 

Nevertheless for radii close to minimum Ae grows rapidly and at some point 
the division into e and M 2 becomes meaningless because e may become 
negative. Knowing that 

we calculate 

3Me 2 
(4.31) 

e to t - -  4 r  

tot tot 3 M  
Omax : P ( 0 )  - -  - -  ~ 1019 g c m - 3  ( 4 . 3 2 )  

4r 

The model presented here is nonrealistic because of neglecting the electro- 
magnetic field which plays a basic role in the Klein-Kaluza theory with 
torsion. A more realistic model would be a model of axial symmetry with 
magnetic field. By using the term (4.9) we could obtain a coupling between 
spin and magnetic field which is lacking in Einstein-Cartan theory. It seems 
that the estimations of both minimal radius and maximal density remain 
basically unchanged. 

5. DIRAC'S EQUATION ON MANIFOLD P 

In this chapter we deal with generalization of Dirac's equation on 
manifold P (metricized electromagnetic bundle). The results obtained here 
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are similar to Thirring's results (1972). All differences will be pointed out. 
We will apply the generalized Dirac's Lagrangian as a source in Klein-  
Kaluza's theory with torsion. And then we point out that in such a way the 
electric dipole moment is a source of torsion in the fifth dimension. We 
introduce several kinds of derivatives and by using them we get a generaliza- 
tion of Dirac's equation. Let us start from the gauge transformation of 
spinors on E. We have 

A ~ A + d  X 
~.._.>lpeiqx ' ~____> ..-e_iq x (5.1) 

where X" E--,R is a function of gauge change. Now we define spinor fields 
on P, 'Is and 't" such that 

e * ~ = ~  e , e*~t ,  = ~ e 

f*q'=C, f,~=~7 
(5.2) 

where e and f are two sections of bundle P. Quantities ~pe, ~e lp f f f  are 
spinors taken in gauge e and f.  We assume that a transition between gauges 
(sections) e and f is defined by the formula (2.4). Thus we have 

@f=~/eeiqX(x), lp f~-~ee -iqX(x) (5.3) 

Fields ~b, f a r e  defined on E: 

tp: E----~ r 

whereas fields q,, ,I, are defined on P: 

,Lit: p ~ r  

And we have 

where 

, ~ (pg , ) - -o (g ; ' ) . (p )  

~,(?g,) =~(p)o(~,) (5.4) 

p= (x, g) e l , ,  g, g, ~ v(1) 



Obviously we have 

R ' ( e ( x ) )  =rr* (~e(x) )  

~(e(X))=~*(~e(x)) 

Let us define a gauge derivative of field R'. It is clear that 

dR" = ~R'0 ~ + ~5R'O 5 

and 

where for f .  we have 

dlq' = hor dR' = f~R't~ ~ 

K a l i n o w s k i  

(5.5) 

(5.6) 

(5.7) 

- - - +)] and let B = B  + be 

T~+ =BT"B -I  , R" = ' f '+B (5.10) 

where " + "  is a Hermitian conjug_ation. We assume the existence of a global 
orthonormal coordinate system 0 r on E. The infinitesimal change of frame 
O~ yields 

e .~+e . .=0  (5.11) 

If spinor field ~ corresponds to coordinate system 6 ~, and +' to 0 's, then we 
have 

l - -  - -  ~ v  q,-~+&p-q,-e o.~ 

t _ _  _ _  / i v  + -~+86-4++%~ (5.12) 

[where ~.. is Minkowski's tensor of signature ( 
a matrix such as 

(7,, 7.) = 2 ~  (5.9) 

Cr are coefficients of nonholonomity (in Section 2 we have had only a 
partially nonholonomical coordinate system). 

Let ~,~ ~ E(~4) be Dirac's matrices obeying the conventional relation 

(5.8) 
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where 
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(5.13) 
m 

Fields ,I, and az are defined on P and P is assumed to have an orthonormal 
coordinate system 0 A. This coordinate system is nonholonomical; a metric 
tensor gA e has a signature ( -  - - 
equal to 0-+ 1. 

It is easy to see that 

+ --) and is diagonal. Its components are 

{TA, 78} = 2gAB (5.14) 

where "y5~-'yl]t2~3')t4t~(r and 7 A =(y~,  ~5); for 75 we also have 

75+=BySB -1 and ~ = ~ + B  

So 

(5.15) 

where 

Notice that the dimension of spinor space for 2n-dimensional space is 2" 
and it is the same for a (2n+  1)-dimensional one. We take a spinor field for 
a five-dimensional space P and assume that dependence on the fifth 
dimension is trivial, i.e., (5.4). Taking a section we obtain spinor fields on E 
(the same dimension of spinor space). Spinor fields q', 'It transform on P 
according to formula (5.18) and spinor fields ~b, ~ on E according to (5.12). 
In the case of any gauge group G the situation becomes more complicated--  
after projecting on E we obtain several different spinor fields. We shall 
discuss this in Section 6. 

),A + = B.yAB-1 (5.16) 

We perform an infinitesimal change of frame O A. 

o A t = o A @ ~ o A = o A - - E A o  B eAB-I-EBA=O (5.17) 

If spinor field xI' corresponds to 0 A, and 'I" to 0 A', then we have 

�9 I,, = ,t, + ~,t, = ,I, - eA BOA B,I , 

"t" = 't' + ~'I" = "I' + 't'0A B e AB (5.18) 
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Now let us take differentials of fields ~b and q] with respect to ~oafl 
(Riemannian on E). We have 

(5.19) 

and introduce a Lagrange form of Dirac's field only 

s d)=i~(fAA dq~+d~Al~)+m~q~ (5.20) 

where l= 'yf i  ~. A coupling between ~ and gravitation is introduced b y  

replacing a normal exterior differential by a covariant exterior differential D 
(i.e., Riemannian in general relativity theory) or D (in Einstein-Cartan 
theory) in ED. Consider a covariant derivation of spinor fields ,t, and ~ on 
P. We have 

D I'ffz ~ N qz -~- (oA B O A BqZ 

(5.21) 

with respect to Riemannian connection ~AB" An analogous formula holds 
with respect to connection wAS, i.e., the Cartanian one on P. Now introduce 
derivatives | (as in Section 3 for WA), i.e., "gauge" derivatives: 

~ ' t '  =hor/)~I'  

|  (5.22) 

Using (2.16) we obtain 

@ ~t" = ~ ' t '  + ~ X F ~  [ 3,~, "/51 O" (5.23) 

The derivative @ is a covariant derivative with respect to both ~r*(~,~) and 
"gauge" at once. It introduces an interaction between electromagnetic and 
gravitational fields with Dirac's spinor in a classical already known way. 

Now let us turn to the Lagrange form (5.20) and lift it on manifold P. 
In order to do this we have to pass from d to d~ and from spinors q~, ~ to 
,I,, gg. Then we obtain the Dirac Lagrangian with an electromagnetic cou- 
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pling in a classical form. Nevertheless we still can work with the derivative 
6~ defined by the formula (5.22). In such a case a Dirac Lagrangian takes 
the form 

~(~t,, T~, s = �89 +mq, U~ (5.24) 

where l----~,y~=~,~,~A0 s. Obviously we may also take ~ instead of 6~. 
However, this wilt not lead to new effects. Using formulas (5.23) we obtain 
after some algebra 

) 1/2 
ED('~', q', @ )=~o(~t',~, ~)--i  2(Gh F~ysCr~q,~l 

C 
(5.25) 

~ 

The Lagrangian ED(xt ', xt', @) describes the interaction between both electro- 
~ 

magnetic and gravitational fields with spinor fields. ED(xI', xI', @) is of course 
of well-known classical form. 

It is clear now that by working with @ we get no additional term in the 
Lagrangian, namely, 

2G1/2 
- t  hF~'"~yso~,,~ (5.26) r 

It is an interaction of an electromagnetic field with a dipole electric 
moment: 

pl 2G1/2 h . . . .  10-32q [cm] 
- -  2 a 1 1 2  q -  - 

where q is the elementary charge. So we see that using spinors if' and ~ and 
a derivative @ in Klein-Kaluza theory, we have achieved an additional 
gravitational-electromagnetic effect. It is just the existence of the electric 
moment of a fermion, which value is composed of elementary constants 
(only!). Thirring (1972) also has achieved in his paper a dipole electric 
moment of a fermion of the same order. In his theory a minimal rest mass 
of a fermion is so big that it can be measured in micrograms. The Thirring 
dipole electric moment has a reverse sign compared to that given by our 
theory. Apart from a dipole electric moment Thirring has also obtained the 
anomalous magnetic moment of similar order. In Thirring's theory both 
anomalous momenta depend on the rest mass of a fermion. And to obtain a 
dipole electric moment of the order 10 -32 the rest mass of a fermion usually 
has to be about 1 /~g (minimal Thirring rest mass). In some other cases 
(larger rest mass) moments may be even smaller. Notice that in our case, the 
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mass m may be arbitrary, e.g., m =0,  and the value of our dipole electric 
moment depends only on elementary constants. It is also worth noticing 
that Thirring's quantities xI' and xI' have nothing to do with our spinor fields 
'Is and ~i, because of the mysterious quantity r which is absent in our theory. 
This quantity ~ appeared in Thirring's definition of the parity operator. 

Now let us consider operations of reflections defined on a manifold P. 
To carry this out we choose a local coordinate system on P 

Then 

(5.27) 

and define the transformations space reflection 1-I, time reversal T, charge 
reflection C, and combined transformations 1-IC, O = TCII in the following 
way: 

(5.28) 

where C -  l ' / "C= - 7  ~*. Taking any section f we get 

and a charge changes a sign. The reflection in coordinate x 5 as a charge 
reflection has already been suggested by J. Rayski (1965). For the space 
coordinate reflection we have 

xtt]?I(xet, X 5 ) =~4xI~(--X, t, X 5 ) (5.29) 

Taking section f we obtain 

(fief) ~(X, / ) :~ /41pf ( - -X ,  t )  

i.e., a normal operator of parity on E. 
Thirring was forced to change the definition of a parity operator on 

five-dimensional space, and he could not obtain a normal parity operator on 
E. For the transformation of time reversal T we have 

�9 t, x 5) -- - t ,  - x s )  (5 .30)  
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Taking section f we get 

(+f)T(x, t)=c-lyl~2~3( ~f)*(X, --l ) 

and a charge changes a sign, e.g., a normal time-reversal operator on 
space-time. For the transformation O = I ICT we put 

t, x ' ) =  t, x 5) (5.31) 

Taking section f we obtain 

( : : )~  t )=  - x ,  t )  

In both cases T and 0 Thirring could not get normal transformations T and 
O on space-time, because of introducing a quantity % For the transforma- 
tion I IC we get 

xItlIC(x, t, x 5) ~-]t4C~tt* ( - x ,  t, - x  5 ) (5.32) 

Taking a section we have 

(+f)HC(x, t)=]t4C(lpf)*(--x, 1!') 

and a charge changes a sign. It is clear that the transformations obtained by 
us do not differ from those known from the literature. The additional term 
in Lagrangian (5.25) breaks symmetry I IC or T in an analogous way as in 
Thirring's (1972) theory, but Thirring defines operator I IC in a different 
way. This can be easily seen by acting on both sides of (5.25) with operator 
HC defined by (5.32). Of course this breaking is very weak and it cannot be 
linked to nonconservation of I IC in the decays of mesons K. Nevertheless 
nonconservation of I IC in these decays has good support in six-quark 
models: the appearance of this dipole electrical moment should rather be 
related to quite different, more basic gravitational-electromagnetic effects 
than to weak interactions of hadrons. At present the dipole electrical 
moment of neutrons (indirectly of quarks) is being sought in experiments. 
The most recent tests reveal that the dipole electrical moment of neutron is 
smaller than 3 X 10 -24 [cm] q. 

Now we apply the Klein-Kaluza theory from Section 3 to Lagrangian 
(5.24) or (5.25)..Define the gauge differentials 

@'t' = hor D'I" 

@'I" = hor D't '  (5.33) 
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where D is a covariant exterior differential with respect to O~AB with torsion. 
Substituting formula (3.22) into (5.33) we get 

1 ,~ , ] ' I ' 0 "  (5.34) 

where 

~'I" = hor/~'I' (5.35) 

By replacing 6) by | we get from (5.24) 

~z)(ql,~,@)=�89 (5.36) 

Using formulas (5.34) we obtain 

2G1/2 
~o(q ' ,  ~ ,  @) = eo( ' t ' ,  if', @) -- i 

c 

(5.37) 

where ED('t', ,I,, 6~) describes the interaction of Dirac's spinor field 't' with 
both electromagnetic and gravitational fields in Einstein-Caftan theory. It 
is worth noticing that in (5.37) there has appeared a term which couples a 
dipole electrical moment to a torsion related to the fifth dimension. 

Applying the theory from Section 3 we write down (3.45), i.e., Cartan's 
equation for sources given by (5.36). In effect we have 

Q~#= i ~  - h3~(Yv%t~ + %t~ yv )q~ 

_ _ -  4~rG --_ 5 
- t ca h"I"qv,~B~,y y ~ I "  (5.38) 

and 

4~-G1/2 
_ _ M , ~ B _  _ 8~G hi-~.yso,q~,t " K '~/~ = (5.39) 

c 2 



Gauge Fields with Torsion 611 

The equation of "matter" L A =0  in this case yields [using (5.39) and (5.38)] 

ihcy~'(-V~,--iqA t, )~ + i2Gl/2hF~yso~,~ff, + 
r 

+ m ~ = 0  

(5.40) 

(5.41) 

is a dual tensor. Notice that by putting m=0  into (5.40) we obtain an 
equation that looks like a nonlinear equation of Heisenberg's prematter 
theory (Urmaterie-gleichungen), with a nonlinear term resulting from the 
Einstein-Cartan theory and Klein-Kaluza theory with torsion. The second 

where 

and 

and 

pair of Maxwell's equations takes the form 

- 4 -  t o t  

c 

tot 
j~ =cq,ItF~ 

, 

8i F ~ F~=~'~-I~I q 

and 

(5.42) 

)] a 1/2 ~ 7  5 0 ~/z~Iz y .y5  

H = F  - i  h~py o ~p 
c 

2 1 

hc 137 

where lpl= Gl/2hl/2c -3/2~ 10 -33 [cm] is a Planck length and 
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is a fine-structure constant and 

is a dual tensor. We may regard F ~ as a specific "vertex function" intro- 
ducing a certain structure of electrical charge which is originated from 
Klein-Kaluza theory with torsion. Notice also that F" we deal with has a 
component breaking parity conservation 

* ) a 1/2 ~ i t y 5 o v ~ i  t .y~y5 (5.43) 

Since the Planck's length lel appears as 131 in (5.43) then parity is breaking 

very weakly indeed. Finally we notice that the introducing of derivatives 
and | can be regarded as a generalization of minimal coupling. Because of 
this generalization we obtained several new effects. 

6. GENERALIZATION TO ANY GAUGE GROUP 

In this chapter we generalize certain results obtained in Sections 2, 3, 
and 5 by considering an arbitrary gauge group G instead of U(1). 

Let us consider a principal fiber bundle P over E with a structural 
group G, metricized as in the Trautman (1970) work. (See also Section 1.) 
Next we introduce a linear Riemannian connection on P. We build a (n + 4) 
form of curvature scalar for this connection and vary it with respect to 
metric tensor, a frame, and a connection. As in Section 2, we define a 
nonholonomical natural frame: 

oA=(~*(O'~),~Oa), a =  1,2,3,4,  a = 5 , 6 , . . . ,  n + 4  (6.1) 

where n = dim G. 
o~= OaXa is a connection of principal bundle P and Xa are generators of 

Lie algebra of G in an adjoined representation. Similarly as in the works by 
Cho and Jang (1975), Cho and Freund (1975), Cho (1975), and Kerner 
(1968), we obtain equations similar to those ef five-dimensional theory. 

The right-hand side of the gravitation equation contains a tensor of 
energy-momentum of gauge field and a cosmological term. This term 
vanishes when the group G is Abelian. The cosmological constant in the 
Einstein equations obtained in such a theory is very large ( ~  1033), which 
weakens these results. 
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Probably, the geometrization of spontaneous symmetry breaking, of 
Higgs' field and the "Higgs" mechanism, could decrease this too-large 
constant. In this theory we obtain also equations of the Yang-Mills fields 
(an analog of the second pair of Maxwell's equations). Derivatives in these 
equations are both with respect to the Riemannian connection of E and 
"gauge." In the case of U(1) these derivatives become the usual derivatives 
with respect to the Riemannian connection on E. Observe also that in the 
case of any gauge group G the strength of the gauge field (curvature of a 
connection on bundle P )  is defined on P, and it is a form with values in 
Lie's algebra of G. This form evidently depends on a choice of section, and 
that is why it is more convenient to define all quantities on P rather than on 
E. In the case with nonvanishing torsion we introduce a non-Riemannian, 
but metrical, connection on P. We also assume the horizontality of a 
two-form of torsion. 

| = h o r  @A (6.2) 

Next we introduce a certain horizontal two-form with values in Lie's algebra 
of G: 

~)~-.oaxa (6.3) 

Thus the torsion separates into two independent parts 

~*(0~) and 0 

where O ~ is a torsion of space-time and O describes torsion in higher 
dimensions. As far as O is concerned we also assume that it is of ad type 
like o~ and fL 

In this way a linear metrical connection ~0AB is defined on P, whose 
torsion has been given in terms of O ~ and O. This connection is a 
generalization of the connection discussed in Section 3 to the case of any 
gauge group G. 

When G =  U(1) then 0 = 0  5 and the condition ad for O becomes (1.2) 
for form 0 5. As in the electromagnetic case we introduce a two-form with 
values in Lie's algebra of G that is an analog of the second two-form of the 
strength of the electromagnetic field: 

H = ~ - � 8 9  (6.4) 

By generalizing the results of Section 3 we build K, a (n+4) - form of 
curvature scalar and introduce A, a (n+4) - form of sources (Lagrangian). 
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By varying 

fVCP ( K - 8 ~rA ) 

with respect to metric, connection and frame we obtain some field equations 
which differ from the equations of Section 3 in the following aspects. On the 
right-hand side of tl~e equations of a gravitational field, instead of Israel's 
tensor, there is a tensor of energy-momentum of gauge field with polar- 
ization 

t = -4-~(h~bH~aFb~a--�88 (6.5) 

where 

e * ~ ---- �89 ( F~,fiu A O~ ) Xa 

e*H----�89 

and e is a section of P. There is of course an additional term that is related 
to higher dimensions and is a square of torsion in higher dimensions 

l~ g,~#h ab M ~ M  b~'" (6.6) 

where Mfl~ is associated with torsion in higher dimensions: 

K ~ =  -- 4 trM~ 

where 

1 a --v A - v  - -  * ~(g;vO 0 )Sa-e  0 

(6.7) 

Torsion associated with higher dimensions has as a source a polarization of 
the gauge field. As far as the equations of the gauge field (the second pair) 
are concerned, the derivatives which appear in the equations are taken with 
respect to both "gauge" and the metrical connection on E lifted on P. This 
means that there will be an additional internal current obeying the analog of 
"Ohm's law" for a gauge field: 

gauge alt a H~' = 4 7rj~' (6.8) 
V 

This current j f l ~ = -  1SUaBHaaB would impose a structure of color charges. 
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Bianchi's identities for linear connection of P, as in Section 3, give rise to 
conservation laws of energy-momentum, angular momentum, and "color 
charges." Although a mathematical scheme of the above-mentioned theory 
of the Klein-Kaluza type with torsion is clear and easily achieved from the 
formalism of Section 3, it is not known what physical sense is hidden behind 
the quantities M;~. 

We can give a generalization of the example discussed in Section 3.7; 
namely, we assume that the vector field W A transforms under the group G 
instead of U(1). This field describes a vector field W~ on manifold E and a 
multiplet of scalar field % that all transform under the same group G. In the 
same way as in Section 3 we can obtain sources of torsion in higher 
dimensions and analogous nonlinear effects. 

Let us consider G=SU(2)• U(1) and generalize results presented in 
Section 5. We have dim P = 8  now. According to J. Rayski's suggestions 
(1977), we analyze spinors defined on P. The dimension of spinor space is 
24-- 16. Introducing spinor fields ,I,, ~ on P we can treat them as multiplets 
of fermions: 

e * ~ =  

xlr 1 

q'2 
% 
% 

(6.9) 

where e is a section of P. Introducing Clifford's algebra F A, A = 1,2, 3 . . . . .  8 
for a form invariant under transformations of SO(l, 7) 

(FA 'FS}=2~AS ( - - ' + + + + + + + ~ ) X 7  (6.10) 

we find generators of Lie's algebra of SO(l ,  7) 

oA'= }[r A, r'] (6.11) 

As in Section 5, we assume that transformations of "I" and ~ correspond to 
the transformation of a global orthonormal flame on P and OA--formulas 
(5.17) and (5.18). Obviously in such a case we have SO(1,7) instead of 
SO(l,4).  

Introducing differentials | as in Section 5, we obtain new terms in the 
Dirac Lagrangian for spinors xI" and ~t'. On a space-time they will separate 

�9 according to formulas (6.9); this will give rise to new interactions between 
fermions and gauge field. 
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Simultaneously we can associate the torsion in higher dimensions  with 

certain terms buil t  from those spinor  fields. It seems that such an approach 
offers, in principle, at least some hope for bui ld ing a unified theory of 

gravitational,  weak, and electromagnetic interactions.  Unfor tunate ly ,  we 

shall not  expect success in this direction unt i l  both  spontaneous  symmetry  
breaking and  Higgs' mechanism are geometrized. All the fields discussed in 

the paper- i .e . ,  bo th  boson  and fermion f i e lds - -a re  massless, and  it is only 
Higgs' mechanism that can give them masses without  breaking gauge 

symmetry. 
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